`
paofan
  • 浏览: 378647 次
社区版块
存档分类
最新评论

Homesteading the Noosphere

    博客分类:
  • SOG
阅读更多
Homesteading the Noosphere by Eric S. Raymond

After observing a contradiction between the 'official' ideology defined by open-source licenses and the actual behavior of hackers, we examine the actual customs which regulate the ownership and control of open-source software. We discover that they imply an underlying theory of property rights homologous to the Lockean theory of land tenure. We relate that to an analysis of the hacker culture as a 'gift culture' in which participants compete for prestige by giving time, energy, and creativity away. We then examine the implications of this analysis for conflict resolution in the culture, and develop some prescriptive implications.


An Introductory Contradiction

Anyone who watches the busy, tremendously productive world of Internet open-source software for a while is bound to notice an interesting contradiction between what open-source hackers say they believe and the way they actually behave - between the official ideology of the open-source culture and its actual practice.

Cultures are adaptive machines. The open-source culture is a response to an identifiable set of drives and pressures. As usual, the culture's adaptation to its circumstances manifests both as conscious ideology and as implicit, unconscious or semi-conscious knowledge. And, as is not uncommon, the unconscious adaptations are partly at odds with the conscious ideology.

In this paper, we will dig around the roots of that contradiction, and use it to discover those drives and pressures. We will deduce some interesting things about the hacker culture and its customs. We will conclude by suggesting ways in which the culture's implicit knowledge can be leveraged better.

The Varieties of Hacker Ideology

The ideology of the Internet open-source culture (what hackers say they believe) is a fairly complex topic in itself. All members agree that open source (that is, software which is freely re-distributable and can readily be evolved and modified to fit changing needs) is a good thing and worthy of significant and collective effort. This agreement effectively defines membership in the culture. However, the reasons individuals and various subcultures give for this belief vary considerably.

One degree of variation is zealotry; whether open source development is regarded merely as a convenient means to an end (good tools and fun toys and an interesting game to play) or as an end in itself.

A person of great zeal might say "Free software is my life! I exist to create useful, beautiful programs and information resources, and then give them away." A person of moderate zeal might say "Open source is a good thing which I am willing to spend significant time helping happen." A person of little zeal might say "Yes, open source is OK sometimes. I play with it and respect people who build it."

Another degree of variation is in hostility to commercial software and/or the companies perceived to dominate the commercial software market.

A very anti-commercial person might say "Commercial software is theft and hoarding. I write free software to end this evil." A moderately anti-commercial person might say "Commercial software in general is OK because programmers deserve to get paid, but companies that coast on shoddy products and throw their weight around are evil." A commercial person might say "Commercial software is OK, I just use and/or write open-source software because I like it better."

All nine of the attitudes implied by the cross-product of the above categories are represented in the open-source culture. The reason it is worthwhile to point out the distinctions is because they imply different agendas, and different adaptive and cooperative behaviors.

Historically, the most visible and best-organized part of the hacker culture has been both very zealous and very anti-commercial. The Free Software Foundation (FSF) founded by Richard M. Stallman (RMS) supported a great deal of open-source development from the early 1980s on, including tools like Emacs and GCC which are still basic to the Internet open-source world, and seem likely to remain so for the forseeable future.

For many years the FSF was the single most important focus of open-source hacking, producing a huge number of tools still critical to the culture. The FSF was also long the only sponsor of open source with an institutional identity visible to outside observers of the hacker culture. They effectively defined the term 'free software', deliberately giving it a confrontational weight (which the newer label 'open source' just as deliberately avoids).

Thus, perceptions of the hacker culture from both within and outside it tended to identify the culture with the FSF's zealous attitude and perceived anti-commercial aims (RMS himself denies he is anti-commercial, but his program has been so read by most people, including many of his most vocal partisans). The FSF's vigorous and explicit drive to "Stamp Out Software Hoarding!" became the closest thing to a hacker ideology, and RMS the closest thing to a leader of the hacker culture.

The FSF's license terms, the "General Public Licence" (GPL), expresses the FSF's zealous and anti-commercial attitudes. It is very widely used in the open-source world. North Carolina's Sunsite is the largest and most popular software archive in the Linux world. In July 1997 about half the Sunsite software packages with explicit license terms used GPL.

But the FSF was never the only game in town. There was always a quieter, less confrontational and more market-friendly strain in the hacker culture. The pragmatists were loyal not so much to an ideology as to a group of engineering traditions founded on early open-source efforts which predated the FSF. These traditions included, most importantly, the intertwined technical cultures of Unix and the pre-commercial Internet.

The typical pragmatist attitude is only moderately anti-commercial, and its major grievance against the corporate world is not 'hoarding' per se. Rather it is that world's perverse refusal to adopt superior approaches incorporating Unix and open standards and open-source software. If the pragmatist hates anything, it is less likely to be 'hoarders' in general than the current King of the software establishment (formerly IBM, now Microsoft).

To pragmatists, the GPL is important as a tool rather than an end in itself. Its main value is not as a weapon against 'hoarding', but as a tool for encouraging software sharing and the growth of bazaar-mode development communities. The pragmatist values having good tools and toys more than he dislikes commercialism, and may use high-quality commercial software without ideological discomfort. At the same time, his open-source experience has taught him standards of technical quality that very little closed software can meet.

For many years, the pragmatist point of view expressed itself within the hacker culture mainly as a stubborn current of refusal to completely buy into the GPL in particular or the FSF's agenda in general. Through the 1980s and early 1990s, this attitude tended to be associated with fans of Berkeley Unix, users of the BSD license, and the early efforts to build open-source Unixes from the BSD source base. These efforts, however, failed to build bazaar communities of significant size, and became seriously fragmented and ineffective.

Not until the Linux explosion of early 1993-1994 did pragmatism find a real power base. Although Linus Torvalds never made a point of opposing RMS, he set an example by looking benignly on the growth of a commercial Linux industry, by publicly endorsing the use of high-quality commercial software for specific tasks, and by gently deriding the more purist and fanatical elements in the culture.

A side effect of the rapid growth of Linux was the induction of a large number of new hackers for which Linux was their primary loyalty and the FSF's agenda primarily of historical interest. Though the newer wave of Linux hackers might describe the system as "the choice of a GNU generation", most tended to emulate Torvalds more than Stallman.

Increasingly it was the anti-commercial purists who found themselves in a minority. How much things had changed would not become apparent until the Netscape announcement in January 1998 that it would distribute Navigator 5.0 in source. This excited more interest in 'free software' within the corporate world. The subsequent call to the hacker culture to exploit this unprecedented opportunity and to re-label its product from 'free software' to 'open source' was met with a level of instant approval that surprised everybody involved.

In a reinforcing development, the pragmatist part of the culture was itself becoming polycentric by the mid-1990s. Other semi-independent communities with their own self-consciousness and charismatic leaders began to bud from the Unix/Internet root stock. Of these, the most important after Linux was the Perl culture under Larry Wall. Smaller, but still significant, were the traditions building up around John Osterhout's Tcl and Guido Van Rossum's Python languages. All three of these communities expressed their ideological independence by devising their own, non-GPL licensing schemes.

Promiscuous Theory, Puritan Practice

Through all these changes, nevertheless, there remained a broad consensus theory of what 'free software' or 'open source' is. The clearest expression of this common theory can be found in the various open-source licenses, all of which have crucial common elements.

In 1997 these common elements were distilled into the Debian Free Software Guidelines, which became the Open Source Definition. Under the guidelines defined by the OSD, an open-source license must protect an unconditional right of any party to modify (and redistribute modified versions of) open-source software.

Thus, the implicit theory of the OSD (and OSD-conforming licenses such as the GPL, the BSD license, and Perl's Artistic License) is that anyone can hack anything. Nothing prevents half a dozen different people from taking any given open-source product (such as, say the Free Software Foundations's gcc C compiler), duplicating the sources, running off with them in different evolutionary directions, but all claiming to be the product.

In practice, however, such 'forking' almost never happens. Splits in major projects have been rare, and always accompanied by re-labeling and a large volume of public self-justification. It is clear that, in such cases as the GNU Emacs/XEmacs split, or the gcc/egcs split, or the various fissionings of the BSD splinter groups, that the splitters felt they were going against a fairly powerful community norm.

In fact (and in contradiction to the anyone-can-hack-anything consensus theory) the open-source culture has an elaborate but largely unrecognized set of ownership customs. These customs regulate who can modify software, the circ umstances under which it can be modified, and (especially) who has the right to redistribute modified versions back to the community.

The taboos of a culture throw its norms into sharp relief. Therefore, it will be useful later on if we summarize some important ones here.

  • There is strong social pressure against forking projects. It does not happen except under plea of dire necessity, with much public self-justification, and with a renaming.
  • Distributing changes to a project without the cooperation of the moderators is frowned upon, except in special cases like essentially trivial porting fixes.
  • Removing a person's name from a project history, credits or maintainer list is absolutely not done without the person's explicit consent.

In the remainder of this paper, we shall examine these taboos and ownership customs in detail. We shall inquire not only into how they function but what they reveal about the underlying social dynamics and incentive structures of the open-source community.

Ownership and Open Source

What does 'ownership' mean when property is infinitely reproducible, highly malleable, and the surrounding culture has neither coercive power relationships nor material scarcity economics?

Actually, in the case of the open-source culture this is an easy question to answer. The owner(s) of a software project are those who have the exclusive right, recognized by the community at large, to re-distribute modified versions [1].

According to the standard open-source licenses, all parties are equals in the evolutionary game. But in practice there is a very well-recognized distinction between 'official' patches, approved and integrated into the evolving software by the publicly recognized maintainers, and 'rogue' patches by third parties. Rogue patches are unusual, and generally not trusted [2].

That public redistribution is the fundamental issue is easy to establish. Custom encourages people to patch software for personal use when necessary. Custom is indifferent to people who redistribute modified versions within a closed user or development group. It is only when modifications are posted to the open-source community in general, to compete with the original, that ownership becomes an issue.

There are, in general, three ways to acquire ownership of an open-source project. One, the most obvious, is to found the project. When a project has only one maintainer since its inception and the maintainer is still active, custom does not even permit a question as to who owns the project.

The second way is to have ownership of the project handed to you by the previous owner (this is sometimes known as 'passing the baton'). It is well understood in the community that project owners have a duty to pass projects to competent successors when they are no longer willing or able to invest needed time in development or maintenance work.

It is significant that in the case of major projects, such transfers of control are generally announced with some fanfare. While it is unheard of for the open-source community at large to actually interfere in the owner's choice of succession, customary practice clearly incorporates a premise that public legitimacy is important.

For minor projects, it is generally sufficient for a change history included with the project distribution to note the change of ownership. The clear presumption is that if the former owner has not in fact voluntarily transferred control, he or she may reassert control with community backing by objecting publicly within a reasonable period of time.

The third way to acquire ownership of a project is to observe that it needs work and the owner has disappeared or lost interest. If you want to do this, it is your responsibility to make the effort to find the owner. If you don't succeed, then you may announce in a relevant place (such as a Usenet newsgroup dedicated to the application area) that the project appears to be orphaned, and that you are considering taking responsibility for it.

Custom demands that you allow some time to pass before following up with an announcement that you have declared yourself the new owner. In this interval, if someone else announces that they have been actually working on the project, their claim trumps yours. It is considered good form to give public notice of your intentions more than once. More points for good form if you announce in many relevant forums (related newsgroups, mailing lists); and still more if you show patience in waiting for replies. In general, the more visible effort you make to allow the previous owner or other claimants to respond, the better your claim if no response is forthcoming.

If you have gone through this process in sight of the project's user community, and there are no objections, then you may claim ownership of the orphaned project and so note in its history file. This, however, is less secure than being passed the baton, and you cannot expect to be considered fully legitimate until you have made substantial improvements in the sight of the user community.

I have observed these customs in action for twenty years, going back to the pre-FSF ancient history of open-source software. They have several very interesting features. One of the most interesting is that most hackers have followed them without being fully aware of doing so. Indeed, the above may be the first conscious and reasonably complete summary ever to have been written down.

Another is that, for unconscious customs, they have been followed with remarkable (even astonishing) consistency. I have observed the evolution of literally hundreds of open-source projects, and I can still count the number of significant violations I have observed or heard about on my fingers.

Yet a third interesting feature is that as these customs have evolved over time, they have done so in a consistent direction. That direction has been to encourage more public accountability, more public notice, and more care about preserving the credits and change histories of projects in ways which (among other things) establish the legitimacy of the present owners.

These features suggest that the customs are not accidental, but are products of some kind of implicit agenda or generative pattern in the open-source culture that is utterly fundamental to the way it operates.

An early respondent pointed out that contrasting the Internet hacker culture with the cracker/pirate culture (the "warez d00dz" centered around game-cracking and pirate bulletin-board systems) illuminates the generative patterns of both rather well. We'll return to the d00dz for contrast later in the paper.

Locke and Land Title

To understand this generative pattern, it helps to notice a historical analogy for these customs that is far outside the domain of hackers' usual concerns. As students of legal history and political philosophy may recognize, the theory of property they imply is virtually identical to the Anglo-American common-law theory of land tenure.

In this theory, there are three ways to acquire ownership of land.

On a frontier, where land exists that has never had an owner, one can acquire ownership by homesteading, mixing one's labor with the unowned land, fencing it, and defending one's title.

The usual means of transfer in settled areas is transfer of title, that is receiving the deed from the previous owner. In this theory, the concept of 'chain of title' is important. The ideal proof of ownership is a chain of deeds and transfers extending back to when the land was originally homesteaded.

Finally, the common-law theory recognizes that land title may be lost or abandoned (for example, if the owner dies without heirs, or the records needed to establish chain of title to vacant land are gone). A piece of land that has become derelict in this way may be claimed by adverse possession - one moves in, improves it, and defends title as if homesteading.

This theory, like hacker customs, evolved organically in a context where central authority was weak or nonexistent. It developed over a period of a thousand years from Norse and Germanic tribal law. Because it was systematized and rationalized in the early modern era by the English political philosopher John Locke, it is sometimes referred to as the 'Lockean' theory of property.

Logically similar theories have tended to evolve wherever property has high economic or survival value and no single authority is powerful enough to force central allocation of scarce goods. This is true even in the hunter-gatherer cultures that are sometimes romantically thought to have no concept of 'property'. For example, in the traditions of the !Kung San bushmen of the Kalahari Desert, there is no ownership of hunting grounds. But there is ownership of water holes and springs under a theory recognizably akin to Locke's.

The !Kung San example is instructive, because it shows that Lockean property customs arise only where the expected return from the resource exceeds the expected cost of defending it. Hunting grounds are not property because the return from hunting is highly unpredictable and variable, and (although highly prized) not a necessity for day-to-day survival. Water holes, on the other hand, are vital to survival and small enough to defend.

The 'noosphere' of this paper's title is the territory of ideas, the space of all possible thoughts [3]. What we see implied in hacker ownership customs is a Lockean theory of property rights in one subset of the noosphere, the space of all programs. Hence 'homesteading the noosphere', which is what every founder of a new open-source project does.

Fare Rideau correctly points out that hackers do not exactly operate in the territory of pure ideas. He asserts that hackers really only own programming projects - intense focus points of material labor (development, service, etc); reputation, trustworthiness, and other individual traits are then associated with these projects. He asserts that the space spanned by hacker projects, is not the noosphere but a sort of dual of it, the space of noosphere-exploring program projects. With a nod to astrophysicists, it would be etymologically correct to call this dual space the 'ergosphere' or 'sphere of work'.

In practice, the distinction between noosphere and ergosphere is not important for the purposes of this paper. It is dubious whether the 'noosphere' in the pure sense Fare insists on can be said to exist in any meaningful way; one would almost have to be a Platonist philosopher to believe in it. And the distinction between noosphere and ergosphere is only of practical importance if one wishes to assert that ideas (the elements of the noosphere) cannot be owned, but their instantiations as projects can. This question leads to issues in the theory of intellectual property which are beyond the scope of this paper.

To avoid confusion, however, it is important to note that neither the noosphere nor the ergosphere is the same as the totality of virtual locations in electronic media that is sometimes (to the disgust of most hackers) called 'cyberspace'. Property there is regulated by completely different rules that are closer to those of the material substratum - essentially, he who owns the media and machines on which a part of 'cyberspace' is hosted owns that piece of cyberspace as a result.

The Lockean structure suggests strongly that open-source hackers observe the customs they do in order to defend some kind of expected return from their effort. The return must be more significant than the effort of homesteading projects, the cost of maintaining version histories that document 'chain of title', and the time cost of doing public notifications and a waiting period before taking adverse possession of an orphaned project.

Furthermore, the 'yield' from open source must be something more than simply the use of the software, something else that would be compromised or diluted by forking. If use were the only issue, there would be no taboo against forking, and open-source ownership would not resemble land tenure at all. In fact, this alternate world (where use is the only yield) is the one implied by existing open-source licenses.

We can eliminate some candidate kinds of yield right away. Because you can't coerce effectively over a network connection, seeking power is right out. Likewise, the open-source culture doesn't have anything much resembling money or an internal scarcity economy, so hackers cannot be pursuing anything very closely analogous to material wealth.

There is one way that open-source activity can help people become wealthier, however - a way that provides a valuable clue to what actually motivates it. Occasionally, the reputation one gains in the hacker culture can spill over into the real world in economically significant ways. It can get you a better job offer, or a consulting contract, or a book deal.

This kind of side effect, however, is at best rare and marginal for most hackers; far too much so to make it convincing as a sole explanation, even if we ignore the repeated protestations by hackers that they're doing what they do not for money but out of idealism or love.

However, the way such economic side-effects are mediated is worth examination. Below we'll see that an understanding of the dynamics of reputation within the open-source culture itself has considerable explanatory power

The Hacker Culture as Gift Economy

To understand the role of reputation in the open-source culture, it is helpful to move from history further into anthropology and economics, and examine the difference between exchange cultures and gift cultures.

Humans have an innate drive to compete for social status; it's wired in by our evolutionary history. For most human history before the invention of agriculture, our ancestors lived in small nomadic hunting-gathering bands. High-status individuals got the healthiest mates and access to the best food. This drive for status expresses itself in different ways, depending largely on the degree of scarcity of survival goods.

Most ways humans have of organizing are adaptations to scarcity and want. Each way carries with it different ways of gaining social status.

The simplest way is the command hierarchy. In command hierarchies, allocation of scarce goods is done by one central authority and backed up by force. Command hierarchies scale very poorly [4]; they become increasingly brutal and inefficient as they get larger. For this reason, command hierarchies above the size of an extended family are almost always parasites on a larger economy of a different type. In command hierarchies, social status is primarily determined by access to coercive power.

Our society is predominantly an exchange economy. This is a sophisticated adaptation to scarcity that, unlike the command model, scales quite well. Allocation of scarce goods is done in a decentralized way through trade and voluntary cooperation (and in fact, the dominating effect of competitive desire is to produce cooperative behavior). In an exchange economy, social status is primarily determined by having control of things (not necessarily material things) to use or trade.

Most people have implicit mental models for both of the above, and how they interact with each other. Government, the military, and organized crime (for example) are command hierarchies parasitic on the broader exchange economy we call 'the free market'. There's a third model, however, that is radically different from either and not generally recognized except by anthropologists; the gift culture.

Gift cultures are adaptations not to scarcity but to abundance. They arise in populations that do not have significant material-scarcity problems with survival goods. We can observe gift cultures in action among aboriginal cultures living in ecozones with mild climates and abundant food. We can also observe them in certain strata of our own society, especially in show business and among the very wealthy.

Abundance makes command relationships difficult to sustain and exchange relationships an almost pointless game. In gift cultures, social status is determined not by what you control but by what you give away.

Thus the Kwakiutl chieftain's potlach party. Thus the multi-millionaire's elaborate and usually public acts of philanthropy. And thus the hacker's long hours of effort to produce high-quality open source.

Examined in this way, it is quite clear that the society of open-source hackers is in fact a gift culture. Within it, there is no serious shortage of the 'survival necessities' - disk space, network bandwidth, computing power. Software is freely shared. This abundance creates a situation in which the only available measure of competitive success is reputation among one's peers.

This observation is not in itself entirely sufficient to explain the observed features of hacker culture, however. The cracker d00dz have a gift culture which thrives in the same (electronic) media as that of the hackers, but their behavior is very different. The group mentality in their culture is much stronger and more exclusive than among hackers. They hoard secrets rather than sharing them; one is much more likely to find cracker groups distributing sourceless executables that crack software than tips that give away how they did it.

What this shows, in case it wasn't obvious, is that there is more than one way to run a gift culture. History and values matter. I have summarized the history of the hacker culture elsewhere [5]; the ways in which it shaped present behavior are not mysterious. Hackers have defined their culture by set of choices about the form which their competition will take. It is that form which we will examine in the remainder of this paper.

The Joy of Hacking

In making this 'reputation game' analysis, by the way, I do not mean to devalue or ignore the pure artistic satisfaction of designing beautiful software and making it work. We all experience this kind of satisfaction and thrive on it. People for whom it is not a significant motivation never become hackers in the first place, just as people who don't love music never become composers.

So perhaps we should consider another model of hacker behavior in which the pure joy of craftsmanship is the primary motivation. This 'craftsmanship' model would have to explain hacker custom as a way of maximizing both the opportunities for craftsmanship and the quality of the results. Does this conflict with or suggest different results than the 'reputation game' model?

Not really. In examining the 'craftsmanship' model, we come back to the same problems that constrain hackerdom to operate like a gift culture. How can one maximize quality if there is no metric for quality? If scarcity economics doesn't operate, what metrics are available besides peer evaluation? It appears that any craftsmanship culture ultimately must structure itself through a reputation game - and, in fact, we can observe exactly this dynamic in many historical craftsmanship cultures from the medieval guilds onwards.

In one important respect, the 'craftsmanship' model is weaker than the 'gift culture' model; by itself, it doesn't help explain the contradiction we initially described at the start of this paper.

Finally, the 'craftsmanship' motivation itself may not be psychologically as far removed from the reputation game as we might like to assume. Imagine your beautiful program locked up in a drawer and never used again. Now imagine it being used effectively and with pleasure by many people. Which dream gives you satisfaction?

Nevertheless, we'll keep an eye on the craftsmanship model. It is intuitively appealing to many hackers, and explains some aspects of individual behavior well enough.

After I published the first version of this paper, an anonymous respondent commented: "You may not work to get reputation, but the reputation is a real payment with consequences if you do the job well." This is a subtle and important point. The reputation incentives continue to operate whether or not a craftsman is aware of them; thus, ultimately, whether or not a hacker understands his own behavior as part of the reputation game, his behavior will be shaped by that game.

The Many Faces of Reputation

There are reasons general to every gift culture why peer repute (prestige) is worth playing for.

First and most obviously, good reputation among one's peers is a primary reward. We're wired to experience it that way for evolutionary reasons touched on earlier. Many people learn to redirect their drive for prestige into various sublimations that have no obvious connection to a visible peer group, such as "honor", "ethical integrity", "piety", etc.; this does not change the underlying mechanism.

Secondly, prestige is a good way (and in a pure gift economy, the only way) to attract attention and cooperation from others. If one is well known for generosity, intelligence, fair dealing, leadership ability, or other good qualities, it becomes much easier to persuade other people that they will gain by association with you.

Thirdly, if your gift economy is in contact with or intertwined with an exchange economy or a command hierarchy, your reputation may spill over and earn you higher status there.

Beyond these general reasons, the peculiar conditions of the hacker culture make prestige even more valuable than it would be in a 'real world' gift culture.

The main 'peculiar condition' is that the artifacts one gives away (or, interpreted another way, are the visible sign of one's gift of energy and time) are very complex. Their value is nowhere near as obvious as that of material gifts or exchange-economy money. It is much harder to objectively distinguish a fine gift from a poor one. Accordingly, the success of a giver's bid for status is delicately dependent on the critical judgement of peers.

Another peculiarity is the relative purity of the open-source culture. Most gift cultures are compromised - either by exchange-economy relationships such as trade in luxury goods, or by command-economy relationships such as family or clan groupings. No significant analogues of these exist in the open-source culture; thus, ways of gaining status other than by peer repute are virtually absent.

Ownership Rights and Reputation Incentives

We are now in a position to pull together the previous analyses into a coherent account of hacker ownership customs. We understand the yield from homesteading the noosphere now; it is peer repute in the gift culture of hackers, with all the secondary gains and side-effects that implies.

From this understanding, we can analyze the Lockean property customs of hackerdom as a means of maximizing reputation incentives; of ensuring that peer credit goes where it is due and does not go where it is not due.

The three taboos we observed above make perfect sense under this analysis. One's reputation can suffer unfairly if someone else misappropriates or mangles one's work; these taboos (and related customs) attempt to prevent this from happening.

All three of these taboo behaviors inflict global harm on the open-source community as well as local harm on the victim(s). Implicitly they damage the entire community by decreasing each potential contributor's perceived likelihood that gift/productive behavior will be rewarded.

It's important to note that there are alternate candidate explanations for two of these three taboos.

First, hackers often explain their antipathy to forking projects by bemoaning the wasteful duplication of work it would imply as the child products evolved in more-or-less parallel into the future. They may also observe that forking tends to split the co-developer community, leaving both child projects with fewer brains to work with than the parent.

A respondent has pointed out that it is unusual for more than one offspring of a fork to survive with significant 'market share' into the long term. This strengthens the incentives for all parties to cooperate and avoid forking, because it's hard to know in advance who will be on the losing side and see a lot of their work either disappear entirely or languish in obscurity.

Dislike of rogue patches is often explained by observing that they can complicate bug-tracking enormously, and inflict work on maintainers who have quite enough to do catching their own mistakes.

There is considerable truth to these explanations, and they certainly do their bit to reinforce the Lockean logic of ownership. But while intellectually attractive, they fail to explain why so much emotion and territoriality gets displayed on the infrequent occasions that the taboos get bent or broken - not just by the injured parties, but by bystanders and observers who often react quite harshly. Cold-blooded concerns about duplication of work and maintenance hassles simply do not sufficiently explain the observed behavior.

Then, too, there is the third taboo. It's hard to see how anything but the reputation-game analysis can explain this. The fact that this taboo is seldom analyzed much more deeply than "It wouldn't be fair" is revealing in its own way, as we shall see in the next section.

The Problem of Ego

At the beginning of the paper I mentioned that the unconscious adaptive knowledge of a culture is often at odds with its conscious ideology. We've seen one major example of this already in the fact that Lockean ownership customs have been widely followed despite the fact that they violate the stated intent of the standard licenses.

I have observed another interesting example of this phenomenon when discussing the reputation-game analysis with hackers. This is that many hackers resisted the analysis and showed a strong reluctance to admit that their behavior was motivated by a desire for peer repute or, as I incautiously labeled it at the time, 'ego satisfaction'.

This illustrates an interesting point about the hacker culture. It consciously distrusts and despises egotism and ego-based motivations; self-promotion tends to be mercilessly criticized, even when the community might appear to have something to gain from it. So much so, in fact, that the culture's 'big men' and tribal elders are required to talk softly and humorously deprecate themselves at every turn in order to maintain their status. How this attitude meshes with an incentive structure that apparently runs almost entirely on ego cries out for explanation.

A large part of it, certainly, stems from the generally negative Europo-American attitude towards 'ego'. The cultural matrix of most hackers teaches them that desiring ego satisfaction is a bad (or at least immature) motivation; that ego is at best an eccentricity tolerable only in prima-donnas and often an actual sign of mental pathology. Only sublimated and disguised forms like "peer repute", "self-esteem", "professionalism" or "pride of accomplishment" are generally acceptable.

I could write an entire other essay on the unhealthy roots of this part of our cultural inheritance, and the astonishing amount of self-deceptive harm we do by believing (against all the evidence of psychology and behavior) that we ever have truly 'selfless' motives. Perhaps I would, if Friedrich Wilhelm Nietzsche and Ayn Rand had not already done an entirely competent job (whatever their other failings) of deconstructing 'altruism' into unacknowledged kinds of self-interest.

But I am not doing moral philosophy or psychology here, so I will simply observe one minor kind of harm done by the belief that ego is evil, which is this: it has made it emotionally difficult for many hackers to consciously understand the social dynamics of their own culture.

But we are not quite done with this line of investigation. The surrounding culture's taboo against visibly ego-driven behavior is so much intensified in the hacker (sub)culture that one must suspect it of having some sort of special adaptive function for hackers. Certainly the taboo is weaker among many other gift cultures, such as the peer cultures of theater people or the very wealthy.

The Value of Humility

Having established that prestige is central to the hacker culture's reward mechanisms, we now need to understand why it has seemed so important that this fact remain semi-covert and largely unadmitted.

The contrast with the pirate culture is instructive. In that culture, status-seeking behavior is overt and even blatant. These crackers seek acclaim for releasing "zero-day warez" (cracked software redistributed on the day of the original uncracked version's release) but are closemouthed about how they do it. These magicians don't like to give away their tricks. And, as a result, the knowledge base of the cracker culture as a whole increases only slowly.

In the hacker community, by contrast, one's work is one's statement. There's a very strict meritocracy (the best craftsmanship wins) and there's a strong ethos that quality should (indeed must) be left to speak for itself. The best brag is code that "just works", and that any competent programmer can see is good stuff. Thus, the hacker culture's knowledge base increases rapidly.

A taboo against ego-driven posturing therefore increases productivity. But that's a second-order effect; what is being directly protected here is the quality of the information in the community's peer-evaluation system. That is, boasting or self-importance is suppressed because it behaves like noise tending to corrupt the vital signals from experiments in creative and cooperative behavior.

The hacker culture's medium of gifting is intangible, its communications channels are poor at expressing emotional nuance, and face-to-face contact among its members is the exception rather than the rule. This gives it a lower tolerance of noise than most other gift cultures, and goes a long way to explain the example in public humility required of its tribal elders.

Talking softly is also functional if one aspires to be a maintainer of a successful project; one must convince the community that one has good judgement, because most of the maintainer's job is going to be judging other people's code. Who would be inclined to contribute work to someone who clearly can't judge the quality of their own code, or whose behavior suggests they will attempt to unfairly hog the reputation return from the project? Potential contributors want project leaders with enough humility and class be able to say, when objectively appropriate, "Yes, that does work better than my version, I'll use it" - and to give credit where credit is due.

Yet another reason for humble behavior is that in the open source world, you seldom want to give the impression that a project is 'done'. This might lead a potential contributor not to feel needed. The way to maximize your leverage is to be humble about the state of the program. If one does one's bragging through the code, and then says "Well shucks, it doesn't do x, y, and z, so it can't be that good", patches for x, y, and z will often swiftly follow.

Finally, I have personally observed that the self-deprecating behavior of some leading hackers reflects a real (and not unjustified) fear of becoming the object of a personality cult. Linus Torvalds and Larry Wall both provide clear and numerous examples of such avoidance behavior. Once on a dinner expedition with Larry Wall I joked "You're the alpha hacker here - you get to pick the restaurant." He flinched audibly. And rightly so; failing to distinguish their shared values from their leaders has ruined a good many communities, a pattern of which he and Linus cannot fail to be fully aware. On the other hand, most hackers would love to have Larry's problem, if they could but bring themselves to admit it.

Global Implications of the Reputation-Game Model

The reputation-game analysis has some more implications that may not be immediately obvious. Many of these derive from the fact that one gains more prestige from founding a successful project than from cooperating in an existing one. One also gains more from projects which are strikingly innovative, as opposed to being 'me, too' incremental improvements on software that already exists. On the other hand, software that nobody but the author understands or has a need for is a non-starter in the reputation game, and it's often easier to attract good notice by contributing to an existing project than it is to get people to notice a new one. Finally, it's much harder to compete with an already successful project than it is to fill an empty niche.

Thus, there's an optimum distance from one's neighbors (the most similar competing projects). Too close and one's product will be a 'me, too!' of limited value, a poor gift (one would be better off contributing to an existing project). Too far away, and nobody will be able to use, understand, or perceive the relevance of one's effort (again, a poor gift). This creates a pattern of homesteading in the noosphere that rather resembles that of settlers spreading into a physical frontier - not random, but like a diffusion-limited fractal wave. Projects tend to get started to fill functional gaps near the frontier.

Some very successful projects become 'category killers'; nobody wants to homestead anywhere near them because competing against the established base for the attention of hackers would be too hard. People who might otherwise found their own distinct efforts end up, instead, adding extensions for these big, successful projects. The classic 'category killer' example is GNU Emacs; its variants fill the ecological niche for a fully-programmable editor so completely that nobody has even attempted a truly different design since the early 1980s. Instead, people write Emacs modes.

Globally, these two tendencies (gap-filling and category-killers) have driven a broadly predictable trend in project starts over time. In the 1970s most of the open source that existed was toys and demos. In the 1980s the push was in development and Internet tools. In the 1990s the action shifted to operating systems. In each case, a new and more difficult level of problems was attacked when the possibilities of the previous one had been nearly exhausted.

This trend has interesting implications for the near future. In early 1998, Linux looks very much like a category-killer for the niche 'free operating systems' - people who might otherwise write competing OSs are now writing Linux device drivers and extensions instead. And most of the lower-level tools the culture ever imagined having as open-source already exist. What's left?

Applications. As the year 2000 approaches, it seems safe to predict that open-source development effort will increasingly shift towards the last virgin territory - programs for non-techies. A clear early indicator is the developmentof GIMP, the Photoshop-like image workshop that is open source's first major application with the kind of end-user-friendly GUI interface considered de rigeur in commercial applications for the last decade. Another is the amount of buzz surrounding application-toolkit projects like KDE and GNOME.

Finally, the reputation-game analysis explains the oft-cited dictum that you do not become a hacker by calling yourself a hacker - you become a hacker when other hackers call you a hacker. A 'hacker', considered in this light, is somebody who has shown (by contributing gifts) that he or she both has technical ability and understands how the reputation game works. This judgement is mostly one of awareness and acculturation, and can only be delivered by those already well inside the culture.

Noospheric Property and the Ethology of Territory

To understand the consequences of property customs, it will help us to look at them from yet another angle; that of animal ethology, specifically the ethology of territory.

Property is an abstraction of animal territoriality, which evolved as a way of reducing intra-species violence. By marking his bounds, and respecting the bounds of others, a wolf diminishes his chances of being in a fight which could weaken or kill him and make him less reproductively successful.

Similarly, the function of property in human societies is to prevent inter-human conflict by setting bounds that clearly separate peaceful behavior from aggression. It is sometimes fashionable to describe human property as an arbitrary social convention, but this is dead wrong. Anybody who has ever owned a dog who barked when strangers came near its owner's property has experienced the essential continuity between animal territoriality and human property. Our domesticated cousins of the wolf are instinctively smarter about this than a good many human political theorists.

Claiming property (like marking territory) is a performative act, a way of declaring what boundaries will be defended. Community support of property claims is a way to minimize friction and maximize cooperative behavior. These things remain true even when the "property claim" is much more abstract than a fence or a dog's bark, even when it's just the statement of the project maintainer's name in a README file. It's still an abstraction of territoriality, and (like other forms of property) our instinct-founded models of property are territorial ones evolved to assist conflict resolution.

This ethological analysis at first seems very abstract and difficult to relate to actual hacker behavior. But it has some important consequences. One is in explaining the popularity of World Wide Web sites, and especially why open-source projects with Web sites seem so much more 'real' and substantial than those without them.

Considered objectively, this seems hard to explain. Compared to the effort involved in originating and maintaining even a small program, a Web page is easy, so it's hard to consider a Web page evidence of substance or unusual effort.

Nor are the functional characteristics of the Web itself sufficient explanation. The communication functions of a Web page can be as well or better served by a combination of an FTP site, a mailing list, and Usenet postings. In fact it's quite unusual for a project's routine communications to be done over the Web rather than via a mailing list or newsgroup. Why, then, the popularity of Web sites as project homes?

The metaphor implicit in the term 'home page' provides an important clue. While founding an open-source project is a territorial claim in the noosphere (and customarily recognized as such) it is not a terribly compelling one on the psychological level. Software, after all, has no natural location and is instantly reproducible. It's assimilable to our instinctive notions of 'territory' and 'property', but only after some effort.

A project home page concretizes an abstract homesteading in the spac e of possible programs by expressing it as 'home' territory in the more spatially-organized realm of the World Wide Web. Descending from the noosphere to 'cyberspace' doesn't get us all the way to the real world of fences and barking dogs yet, but it does hook the abstract property claim more securely to our instinctive wiring about territory. And this is why projects with Web pages seem more 'real'.

This ethological analysis also encourages us to look more closely at mechanisms for handling conflict in the open-source culture. It leads us to expect that, in addition to maximizing reputation incentives, ownership customs should also have a role in preventing and resolving conflicts.

Causes of Conflict

In conflicts over open-source software we can identify four major issues:

  • Who gets to make binding decisions about a project?
  • Who gets credit or blame for what?
  • How to reduce duplication of effort and prevent rogue versions from complicating bug tracking?
  • What is the Right Thing, technically speaking?

If we take a second look at the "What is the Right Thing" issue, however, it tends to vanish. For any such question, either there is an objective way to decide what is accepted by all parties or there isn't. If there is, the game is over and everybody wins. If there isn't, it reduces to "who decides?"

Accordingly, the three problems a conflict-resolution theory has to resolve about a project are (A) where the buck stops on design decisions, (B) how to decide which contributors are credited and how, and (C) how to keep a project group and product from fissioning into multiple branches.

The role of ownership customs in resolving issues (A) and (C) is clear. Custom affirms that the owners of the project make the binding decisions. We have previously observed that custom also exerts heavy pressure against dilution of ownership by forking.

It's instructive to notice that these customs make sense even if one forgets the reputation game and examines them from within a pure 'craftmanship' model of the hacker culture. ......

评论

相关推荐

    Top Homesteading Blogs-crx插件

    语言:English ...草原家园1.4 Weedemandreap.com 1.5 Fresheggsdaily.com 1.6 Thefrugalchicken.com 1.7小房子生活1.8 Purelivingforlife.com 1.9现代家园1.10 Homestead-Honey.com 1.11 The Grownetwork....

    Suno AI Download 免费下载Suno AI 音乐

    网站描述:Sunoaidownload——从分享链接中轻松下载Suno AI生成的歌曲文件 内容概要: 这是一个专门提供Suno AI生成的歌曲文件下载服务的网站,用户可以通过分享链接轻松获取所需文件。本网站提供高质量、多样化的音乐资源,满足不同用户的需求。 适用人群: 该网站适用于所有热爱音乐、需要音乐素材的用户,特别适合音乐创作者、音乐爱好者、学生、教师等人群使用。 使用场景: 该网站的使用场景非常广泛,具体包括以下几个方面: 1. 音乐创作:音乐创作者可以使用本网站提供的歌曲文件进行创作,丰富作品内容,提升作品质量。 2. 音乐学习:学生和教师可以使用本网站的歌曲文件进行音乐学习,提高音乐素养和技能。 3. 娱乐休闲:普通用户可以使用本网站的歌曲文件进行放松、娱乐和休闲,享受音乐带来的愉悦。 其他说明: 本网站提供高速、稳定的下载服务,确保用户能够快速获取所需文件。同时,我们注重版权保护,只提供合法授权的歌曲文件,避免侵犯他人权益。为了更好地服务用户,我们不断优化网站功能和用户体验,欢迎提出宝贵意见和建议。此外,为了保障用户数据安全,我们采取了先进的安全措施。

    基于Python的Django配置Celery设计源码

    本项目是基于Python的Django配置Celery设计源码,包含20个文件,其中主要包含17个py源代码文件。系统采用了Python编程语言,实现了Django配置Celery的功能。项目结构清晰,代码可读性强,易于理解和维护。

    物联网嵌入式ESP32开发例程05-FreeRTOS操作系统之时间片调度C程序代码.rar

    1、嵌入式物联网ESP32项目实战开发。例程经过精心编写,简单好用。 2、代码使用Visual Studio Code + ESP-IDF开发,C语言编程。例程在ESP32-S3上运行。若在其他型号上运行,请自行调整。 3、如果接入其他传感器,请查看发布的其他资料。 4、ESP32与模块的接线,在代码当中均有定义,请自行对照。 5、若硬件差异,请根据自身情况适当调整代码,程序仅供参考。 6、代码有注释说明,请耐心阅读。 7、技术v:349014857;

    华为IPMS流程优化策略glz.pptx

    华为IPMS流程优化策略glz.pptx

    文字转合成语音软件工具

    文字转语音软件,两款,都非常好用,亲测有效,免费声音足够使用,需要的兄弟自行下载

    工作汇报 年终总结5.pptx

    引言 年度工作回顾 系统进展与亮点 技术创新与应用 市场反馈与用户评价 存在问题与挑战 未来展望与计划 结束语与感谢 一、引言 简要介绍智能家居系统的重要性和发展趋势 回顾本年度的工作目标和重点 二、年度工作回顾 系统建设与维护 完成的项目与里程碑 系统稳定性与可靠性提升 团队建设与培训 团队成员构成与职责 培训与技能提升活动 合作伙伴与资源整合 与供应商、合作伙伴的合作情况 资源整合与利用 三、系统进展与亮点 功能扩展与优化 新增功能介绍与效果评估 现有功能的优化与改进 用户体验提升 界面设计与交互优化 用户反馈与改进措施 四、技术创新与应用 物联网技术的应用 传感器与通信技术的升级 大数据分析与应用 智能家居的智能化管理 自动化控制与节能策略 安全防护与预警系统 五、市场反馈与用户评价 市场反馈分析 市场需求与竞争态势 市场占有率与增长趋势 用户评价总结 用户满意度调查结果

    基于SpringBoot和OpenAI的聊天机器人设计源码

    本项目是基于SpringBoot和OpenAI的聊天机器人设计源码,包含1559个文件,其中主要包含605个java源代码文件,361个js脚本文件,238个vue前端文件等。系统采用了Java、JavaScript、Vue、CSS、HTML、Shell和TypeScript技术,实现了一个基于SpringCloud的Chatgpt机器人。该项目已对接GPT-3.5、GPT-4.0、百度文心一言、stable diffusion AI绘图、Midjourney绘图等AI技术。用户可以在界面上与聊天机器人进行对话,聊天机器人会根据用户的输入自动生成回复。项目结构清晰,代码可读性强,易于理解和维护。

    2024年全球控制膨胀合金箔行业总体规模、主要企业国内外市场占有率及排名.docx

    2024年全球控制膨胀合金箔行业总体规模、主要企业国内外市场占有率及排名

    电子通信设计资料多点温度检测系统设计论文资料

    电子通信设计资料多点温度检测系统设计论文资料提取方式是百度网盘分享地址

    基于Bootstrap的树形表格设计源码

    本项目是基于Bootstrap的树形表格设计源码,包含31个文件,其中主要包含7个js脚本文件,5个css样式文件等。系统采用了JavaScript、CSS和HTML技术,实现了基于Bootstrap的树形表格功能。该项目最初出现在guns项目中,基于jquery.treegrid.js实现树形结构,但由于性能问题,重新实现了相关功能。其用法与bootstrap-table类似。项目结构清晰,代码可读性强,易于理解和维护。

    基于STM32F4的智能门锁超详细解析(矩阵键盘、OLED、舵机、HC-05蓝牙、F407ZG最小系统)可用于毕业设计.zip

    基于STM32F4的智能门锁超详细解析(矩阵键盘、OLED、舵机、HC-05蓝牙、F407ZG最小系统)可用于毕业设计.zip

    万能文件查看器 支持各种文件格式.zip

    万能文件查看器 支持各种文件格式.zip

    电子通信设计资料智能健康监护仪的研究毕业设计论文资料

    电子通信设计资料智能健康监护仪的研究毕业设计论文资料提取方式是百度网盘分享地址

    2023年中老年奶粉行业展望.pptx

    行业研究

    YOLOv8训练飞机检测模型+权重+数据集

    1、YOLOv8训练飞机检测模型,并包含标注好的飞机检测数据集,标签格式为xml和txt两种,类别名为aeroplane, 2、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 5、采用pytrch框架,代码是python的

    asp.net基于三层模式实验室仪器设备管理系统源码.7z

    实验室设备仪器管理系统基于MVC思想和三层设计模式构建,前台采用bootstrap响应式框架,后台运用div+css技术,确保用户界面的友好与兼容性。在Visual Studio 2010或更高版本软件上进行程序开发,利用sqlserver2005或更先进的数据库系统提供稳定的数据支持。 该系统包含四个核心模块:实验室登陆模块、学生模块、教师模块和管理员模块。登陆模块提供用户注册和登陆功能,确保用户信息的准确与安全。学生模块提供实验课仪器设备的信息查询、借领仪器耗材、设备事故的登记等服务,满足学生在实验过程中的各种需求。 管理员模块功能丰富,包括实验室设备信息查询、设备事故记录、设备资料管理、设备损坏管理以及设备耗材借领等。管理员可以方便地查询和统计设备仪器信息,上报和处理设备事故,更新设备操作指南,管理设备损坏信息,以及处理设备耗材的借领和归还。 实验设备管理数据库是系统的核心部分,管理员可以添加、删除、更改设备信息,记录报废、维修、申请购买以及新增设备的详细信息。所有相关信息如报废表、维修表、设备购买申请表、新增设备属性表等都会在终端实时显示,确保信息的及时性和准确性。 此

    1急急急i几i积极急急急急急急急急急急急急急急急急急急急急急急急急积极

    1急急急i几i积极急急急急急急急急急急急急急急急急急急急急急急急急积极

    TIMIT数据集下载TIMIT数据集下载,种子资源。.zip

    TIMIT数据集下载TIMIT数据集下载,种子资源。

    华为手机营销方法论IPMS和GTM高级培训课件(第二部分)glz.pptx

    华为手机营销方法论IPMS和GTM高级培训课件(第二部分)glz.pptx

Global site tag (gtag.js) - Google Analytics